

3rd Full-Scale Testing Facility, CBRI-CSIR, Roorkee 2024

National Center for Earthquake Safety of Dams, MNIT Jaipur 2023

Release of IS 18289 Post Earthquake Safety Assessment
of Buildings 20232nd Full-Scale Testing Facility, MNIT Jaipur 2021

The Dam Safety Act 2021

Harmonisation of Earthquake Codes 2020

NDMA Rapid Visual Screening
Primer 2020NDMA Earthquake Disaster Risk
Indexing of Cities/Towns 2019National Centre for Safety of
Heritage Structures 2013NDMA Earthquake
Retrofit Guidelines 2013

National Seminar on
Earthquake Safety in India
*Towards Safety of the Built Environment and
Heritage Structures*

Commemorating the 25th Year of
2001 Bhuj Earthquake

23-24 January 2026
Jaipur

2009 NDMA Earthquake
Hazard Project

2007 NDMA Earthquake Guidelines

2007 Full-Scale Testing Facility, IIT Kanpur

2005 MHA NPCBEERM NPCBAERM

2005 National Disaster Management Authority

2003 GSDMA-IITK Project on Codes

2003 Structural Engineering Forum of India

2003 National Program on Earthquake Engineering Education

2001 National Information Centre of Earthquake Engineering

Organized by

2001
Bhuj Earthquake

2001 Bhuj Earthquake

India experienced four significant earthquakes in past 125 years. The 2001 Bhuj Earthquake, which occurred on January 26, 2001, was the first major earthquake in urban India that tested the effectiveness of the "modern" built environment. During this event, numerous multi-storey buildings with open ground floors, bridges, water tanks, and earthen dams collapsed in a brittle manner. Extensive liquefaction occurred within the epicentral area, affecting the landmass. Open ground storey and other irregularities in buildings led to a loss of approximately 13,800 lives and injuries to over lakhs of people. About 2,30,000 houses collapsed, and over 10 lakhs were damaged. Specifically, the collapse of around 3,500 school rooms, the district hospital, the office-cum-residence of the district magistrate, and structures of the Indian Air Force Base, and multiple mid-rise buildings in Ahmedabad (~300 kms away from the epicenter) demonstrated that all types of structures (critical, special, important and normal) were vulnerable, and life safety was not guaranteed.

The devastation during the 2001 Bhuj Earthquake prompted academia, engineering professionals, and government bodies to renew long-term, fundamental initiatives aimed at improving Earthquake Safety in India. Over the past 25 years, India has made steady and consistent progress in raising awareness and building technical capacity. The Disaster Management Act of 2005, enacted by the Government of India, and the development of NDMA Guidelines on Earthquake Management were significant and important steps towards achieving earthquake-resilient infrastructure in India.

Earthquake Safety in India

Commemorating the 25th Year of 2001 Bhuj Earthquake

Several lessons have been learnt from the 26 January 2001 Bhuj Earthquake, a turning point for the Indian Civil Engineering and Architecture community. Significant and long-term steps have been taken by the Government of India, State Governments, Academic & Research Institutions, Civil, Structural & Architectural Societies and Organizations. In the 25th year of the Bhuj Earthquake, it is time to take stock of the progress made and deliberate on the future directions towards achieving the objective of earthquake-resilient India.

Themes

1. Indian Standards and Earthquake Safety
2. Earthquake Safety of Heritage Structures
3. Earthquake Safety of Dams
4. Earthquake Retrofit of Existing Structures
5. New and Emerging Technologies for Housing and Infrastructure
6. Testing of Structures for Earthquake Effects

Organizing Committee

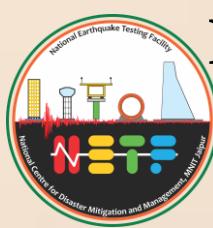
Patron	Professor N. P. Padhy, Director, MNIT Jaipur
Chairperson	Professor S. D. Bharti, Head, Civil Engineering, MNIT Jaipur
Co-Chairperson	Dr. Shailesh K. Agarwal, Formerly Executive Director, BMTPC
Secretary	Dr. Nishant Roy, Head, NCDMM, MNIT Jaipur
Joint Secretary	Dr. Jagajyoti Panda, Assistant Professor, NCDMM, MNIT Jaipur

Technical Advisory Committee

Sudhir K. Jain, Formerly Director, IIT Gandhinagar, and Vice-Chancellor, BHU
Krishna S. Vatsa, Member, NDMA, New Delhi
Sanjay Pant, Special Director General (Standards), Bureau of Indian Standards, New Delhi
R. Pradeep Kumar, Director, CSIR CBRI, Roorkee
Alpa R. Seth, Managing Director, VMS Consultants Private Limited, Mumbai
Jaswant N. Arlekar, R. S. Mandrekar & Associates, Mumbai
P. Vishnu Sai, EqSI, Hyderabad
T. K. Datta, IIT Delhi
Alok Goyal, IIT Bombay
Ravi Sinha, IIT Bombay
C. V. R. Murty, IIT Madras
R. S. Jangid, IIT Bombay
M. K. Shrimali, MNIT Jaipur
Vasant Matsagar, IIT Delhi
D. R. Sahoo, IIT Delhi
Subhadeep Banerjee, IIT Madras
S. T. G. Raghukant, IIT Madras
Rupen Goswami, IIT Madras
Arun Menon, IIT Madras
B. K. Maheshwari, IIT Roorkee

Organizers

Partners



Details

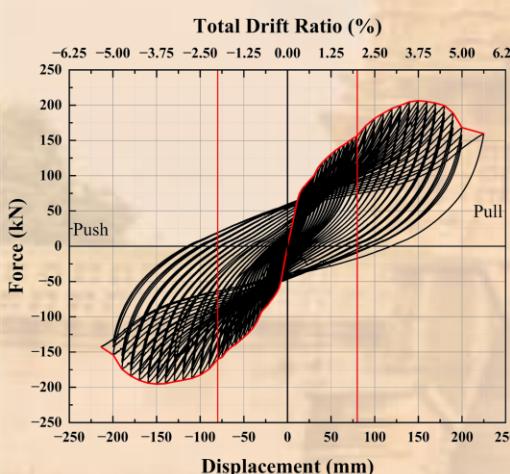
Sponsorship Category

Platinum	Diamond	Gold	Silver	Bronze	Supporter
----------	---------	------	--------	--------	-----------

Amount (Rs. Lakhs) Plus Institute Overhead @20%	20.0	10.0	5.0	2.5	1.0	0.5
Logo on Backdrop	✓	✓	✓	✓	✓	-
Exhibition Stall	✓	✓	✓	✓	✓	✓
Presentation (Minutes)	7	5	5	5	-	-
Catalogues Distribution	✓	✓	✓	✓	✓	✓

National Earthquake Testing Facility

MNIT Jaipur


The National Earthquake Testing Facility (NETF) at MNIT Jaipur is the full-scale testing laboratory to study the effects of earthquake under quasi-static, pseudo-dynamic, and dynamic (reduced-scale) loading

- (1) Up to 3-storeyed building systems,
- (2) Sub-assemblages of buildings up to 10m in height,
- (3) Bridge girders up to 15m span,
- (4) Bridge piers up to 10m height, and
- (5) Base isolation devices.

Full-Scale Testing : Bhunga

Project "Development of Type Designs of Aanganwaadi & Houses Using Structural Steel"
Sponsored by **Ministry of Steel** with Industry Partners **SAIL, TATA Steel, JSWL, JSPL & AN/MS**

National Seminar on

Earthquake Safety in India

Commemorating the 25th Year of 2001 Bhuj Earthquake

23-24 January 2026

Venue

Rajasthan International Center

Sansthan Path, JLN Marg, Jaipur 302017

Registration Link: <https://netf.mnit.ac.in/register>

Contact

Dr. Nishant Roy

Head, National Centre for Disaster Mitigation and Management

Malaviya National Institute of Technology, Jaipur 302017

eMail: nishant@mnit.ac.in | WhatsApp: +91 7003150254

